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Abstract

How much of the observed labour productivity spread is real? This
paper develops a novel framework to calculate productivity differences
between plants which are due to differences in TFP and/or idiosyn-
cratic demand shocks and not due to measurement error in variable
factors or substitution between labour and other factors. The frame-
work simultaneously accounts for imperfect competition, variations in
output prices across plants and endogeniety of factor inputs. For UK
manufacturing as a whole I find that on average 59 percent of the
labour productivity spread is explained by TFP and demand shocks.
Measurement error accounts on average for 9 percent of labour produc-
tivity spreads. This masks considerable heterogeneity across 3 digit
sectors with measurement error accounting for as much as 28 percent
in some sectors.

1 Introduction

A number of studies (these include Haskel and Martin [5], Oulton [13], Bailey

et al [1], Bartelsman and Dhrymes [2]) have revealed that plant level data
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displays huge variations in measured productivity even between firms that

populate the same 4 digit industry cluster. For example in terms output per

employee the ratio between firms at the 90iest and 10th is on average more

than 5 [5]. This phenomenon has been referred to as the productivity spread

There are two basic hypothesis about the productivity spread: First, in a

free market economy productivity spreads are something normal and simply

a byproduct of the competitive selection process between good and bad firms.

Alternatively, productivity spreads might be an issue of concern reflecting a

for some reason hampered selection process where low productivity firms do

not exit but bind resources in an unproductive way.

A slightly different hypothesis is that productivity spreads do not really exist

but are rather the outcome of measurement problems. The classical example

concerns labour inputs: Different plants might simply substitute between

low and high skilled labour. High skilled workers work better and therefore

less of them are needed but they also cost more. The plant employing the

high skilled workers will have a higher measured productivity but there is no

way in which shifting the low skilled workers to the high skilled plant will

improve overall productivity because that plant does not have any superior

technology either to get more out of them.

A similar argument can be made regarding material inputs. Some plants

could decide to use fewer but higher quality intermediates achieving the same

results as plants which employ more of the cheaper variety. As we do not

have firm level intermediates prices we are ignorant of this, however.

Before deciding if there is too much or too little of the right or wrong spread

it is therefore worthwhile to improve our measure of the spread.

To make progress note that all the measurement problems described above

while affecting measures of productivity have no effect on measured profits.

Profits are however correlated with genuine variations in TFP. The following

section develops an estimation framework that exploits this observation to
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come up with a measure of the true spread.

2 A model to estimate the true spread

Before deriving the model note that genuine variations in TFP are not com-

patible with perfect competition. If one plant in the market has a technology

which – using the same inputs – can produce more output, then this plant

can always cut its price a little to drive its competitors with the inferior

technology out of the market. It is funny however that most approaches to

measure TFP at the plant level start with the assumption that the market

structure can be characterized by perfect competition. Why bother to mea-

sure plant level TFP if you believe in perfect competition? The answer is

that nobody believes in perfect competition but in order to measure TFP

you need plant level prices. But, since normally only sector level prices are

available assuming perfect competition ensures that plant level prices are

equal to sector level prices.

To avoid such inconsistencies I start here with what we really observe build-

ing on work by Klette and Grilliches [7]. What we really observe at the plant

level is revenue deflated with an industry price index:

rit − pt = qit + pit − pt (1)

where everything is stated in log deviations from the industry median corre-

sponding to the focus of the current paper on productivity variations within

an industry. The median deviation notation also allows to ignore all terms

which are constant accross all firms in an industry at given point in time

such as the industry price index for example so that pt = 0. To proceed we

must introduce assumptions regarding technology and market structure.

For the production function assume that it is of a general form but homoge-

nous to degree γ, i.e.

Qit = Ait (f(Xit))
γ (2)
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where f(·) is a general differentiable linear homogenous function, Ait is a

Hicks neutral shift parameter1 and Xit is a vector of J inputs. Avoiding any

further assumptions on the form2 of the production function we can invoke

the mean value theorem to write a plants output relative to the median plant

as

qit = ait +
Z∑

z=1

αzxzit (3)

where

αz = γfz(X̄it)
X̄zit

f(X̄it)
(4)

fz(·) denotes the partial derivative of f(·) with respect to factor z and X̄it is

some point in the convex hull spanned by Xit and Xit−1.

For the market structure I follow Klette and Grilliches and assume a Dixit-

Stiglitz monopolistic competition setting; i.e. plant level product demand

becomes

Qit =
Rt

Pt

Λη−1
it

(
Pit

Pt

)−η

(5)

where Rt is the sectoral revenue, Pt the sectoral price index and Pit the price

of the individual firm. This is quite restrictive but better than ignoring the

problem of price variation completely and not any more restrictive than the

common practice to assume that everything in this world is produced by a

Cobb Douglas production function.

A demand function such as Equation 5 implies a markup pricing rule

Pitγ
Qit

f(Xit)
fz(Xit) = µWzit (6)

i.e. prices must be such that the marginal value product is µ times the

marginal cost of each factor. Our demand function implies that µ = 1
1− 1

η

.

As pointed out by Klette[8], Equation 6 can only be expected to hold for

production factors which are easily adjustable. I distinguish in the follow-

ing between 3 types of inputs: labour, intermediates and capital. I assume

1Also known as TFP
2Except for differentiability that is
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labor and material can be adjusted immediately to it optimal value while

capital is fixed in the short term. As a consequence 6 holds in for labour

L and intermediates M conditional on the level of the capital stock K. For

intermediates and labour we can therefore write

αj = µ
WjXjit

PitQit

= µsjit (7)

where Sjit is the revenue share of factor j. Further because we assumed linear

homogeniety of f(·) we get that

αK = γ − αL − αM (8)

We get therefore in 3 that

qit = ait + µviit + µςit + γkit (9)

where

viit =
∑
z �=K

s̄j(xzit − kit) (10)

is an index of all variable factors and ςit is an iid error introduced by the fact

that the first order conditions might not hold exactly. Applying all these

results to Equation 1 we get

rit = viit +
γ

µ
kit + ωit + ςit (11)

where

ωit =
1

µ
(ait + λit) (12)

There are three things to note about Equation 11: First, the error term

is a composite of the idiosyncratic demand and the supply shock. They

both represent genuine spread in the sense that – ceteris paribus – shifting

resources from a plant with low λit or ait to ones with higher values would

make sense from a welfare point of view. I suggest therefore this composite

measure of shocks as the relevant entity to seek in order to compute the true
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spread3. I will refer to this as Total Factor Value Productivity (TFVP)

Second, efforts to estimate 11 will have to struggle with potential correlation

between the unobserved shocks ωit and the input variables viit and xKit. This

is the classical production function endogeniety problem4. In plant level data

correlation is introduced in addition through a between the exit decision of

plants and the observed explanatory variables.

Third, an additional endogeneity problem is introduced by the measurement

error problems discussed in the introduction; i.e. what we observe is not the

true variable factor index viit but some distorted signal

ṽiit = viit − �it (13)

where �it is measurement error.

Point one suggested to get an estimate of ωit in order to compute the true

spread. Points two and three outlined the main obstacles in this effort. Next

I will discuss how I address these obstacles. I will show that profits Πit –

defined as revenue less variable costs – can be used like an instrument for

variable inputs. Equally, they can be used in a framework along the lines of

Olley and Pakes [12] to account for the endogeniety problem.

3To make the point clearer consider the example of two plants producing fizzy drinks.

Presidents Cola is US owned whereas Queens Cola is the British competitor. Suppose the

two plants employ exactly the same production technology so that the number of cola tins

produced per input i.e. ait is equal across the two plants. Queens Cola can charge a

higher price because their branding resonated with the patriotic feelings of Britons. If we

only measured genuine TFP we would not capture this. Crucially the differential in the

λit component suggests that - ceteris paribus - shifting production factors from Presidents

to Queens Cola or allowing President Cola to sell using Queens Cola branding, will be

welfare improving.
4Compare Grilliches and Mairesse[4]
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2.1 How to account for endogeneity

Formally the endogeneity problem follows from the profit maximization prob-

lem of plants. If plants maximize profits conditional on the state vari-

ables capital kit and plant specific demand and TFP shock composite, ωit,

then the variable factors are functions of kit and ωit: lit = l(kit, ωit) and

mit = m(kit, ωit). Equally the firms short term profit function – i.e. revenue

minus variable costs – is a function of ωit and capital5:

Πit = Rit − Cit = Π(ωit, kit) (14)

In the Appendix I show that under the assumptions made so far about market

structure and production technology, this function is monotone in ωit. This

implies that we can invert it and write

ωit = φω(Πit, kit) (15)

where φω(·) = Π−1(·). This means that we can use profits in a similar way

as Olley and Pakes[12] have used investment and Levinsohn and Petrin[9]

materials to control for ωit in order to estimate 11. We start by assuming

that ωit evolves as a Markov process:

ωit = E{ωit|ωit−1} + νit (16)

where νit is iid. Consequently our regression equation 11 can be rewritten as

rit − viit =
γ

µ
kit + E{ωit|ωit−1} + νit + ςit (17)

If we can assume that kit is only correlated with the expected component

of ωit but not with νit then it is sufficient to control for E{ωit|ωit−1} in

order to estimate γ
µ

consistently. Olley and Pakes get this condition by

assuming that investment in t only affects the capital stock in t + 1. An

5Formally all these variables are functions of factor costs and other aggregate variables

as well, but to avoid notational clutter I focus on what varies between plants
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alternative assumptions – which Olley and Pakes cannot make because they

use investment in t to predict ωit - is that investment in t s predetermined

in period t.

But how to control for E{ωit|ωit−1} after all? We do not know which function

form E{ωit|·} takes but we have found in 15 a way to express its argument

as a function of observables. We can therefore rewrite 11 as

rit − viit =
γ

µ
kit + g(kit−1, Πit−1) + νit + ςit (18)

where g(·) = E{ωit|φω(·)}. If are willing to approximate g(·) by a higher

order polynomial 18 reduces to a simple least squares problem. Alternatively

we could use 18 to get initial values for a more challenging but more efficient –

in the econometric sense – procedure: Start with a first stage nonparametric

regression

rit − viit = φ(kit, Πit) + ςit (19)

where φ(kit, Πit) = γ
µ
kit + φω(Πit, kit) because as long as we do not know the

functional form of φω(·) we cannot identify γ
µ

separately in such a regression.

This provides an estimate φ̂it for each observation. Equation 18 can then be

restated as a nonlinear least squares problem:

rit − viit =
γ

µ
kit + h(φ̂it − γ

µ
kit−1) + νit + ςit (20)

where h(·) = E{ωit|·} is approximated again by a third order polynomial.

2.2 Accounting for exit

The fact that input factors are functions of ωit is not the only factor that

leads to endogeneity in regressions of equation 11. Because we are working

with plant level data and unlike e.g. countries, plants can exit the industry

or die all together there is an additional endogeneity problem from a depen-

dance of this exit decision on the current level of the capital stock. Ericson
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and Pakes[?] provide an elaborate model that formalises this idea. What

is required intuitively is that the scrap value upon exiting increases slower

than profits upon continuation with increasing capital stock. For the empir-

ical application it suffices to note that there is some lower threshold level of

ω which is a function of kit

ωit = ωit(kit) (21)

If a plant i’s level of ωit drops below ωit it exits. Consequently our regression

equation 22 becomes

rit − viit =
γ

µ
kit + E{ωit|ωit−1, ωit} + νit + ςit (22)

Thus to run this equation we need some form to control for ωit as well as for

ωit. I follow Olley and Pakes [12] and apply one of their derivations to my

framework. Note that we can write for the probability that a plant exits:

P (Stay after period t) = P (ωit > ωit+1(kit+1)|ωit(kit), ωit)

= p(ωit(kit), ωit)

= p(kit, Πit) = Pit

(23)

where the third equality follows from equation 15. Thus we can a run a

Probit on exit with capital and profits as explanatory variables. This gives

an estimate of Pit. Now if Pit, the probability that a plant stays in the

market, increases monotonically with ωit
6, p(·) is invertible so that we can

write

ωit = p−1(Pit, kit, Πit) (24)

which means that we can control for ωit using the estimate of ¶it. Conse-

quently equation 18 becomes

rit − viit =
γ

µ
kit + g(Πit−1, kit−1, P̂it−1) + ν̃it + εit (25)

6not a very strong assumptions
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and we can proceed as outlined in the last section.

2.3 Alternative approaches and difference to Olley and

Pakes and Levinsohn and Petrin

see Martin[11]

2.4 The measurement error problem

Our measure of labour input is a simple headcount measure of the number of

persons employed. This might hide important differences in the skill compo-

sition of the labour force between plants. Equally there might be variations

in the quality of intermediate inputs between plants. Why is this a problem

for TFP calculation? To gain some intuition I introduce a simple example:

Suppose what matters for the plant is a composite measure of efficiency units

of skilled and unskilled workers:

Lit = Uit + φHit (26)

where Uit denotes the number of unskilled and Hit the number of (highly)

skilled workers and φ is a constant larger than one which denotes the relative

productivity of high to low skilled workers. What we observe is simply the

sum of skilled and unskilled workers of course:

L̃it = Uit + Hit

The measurement error term becomes in this case

�it = sL�L
it (27)

where

�L
it = lit − l̃it =

φHit

Lit

(hit − l̃it) +
Uit

Lit

(uit − l̃it) (28)
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If the two skill types enter the production function as suggested in equation

26 and relative wages reflect relative productivity, then the profit maximisa-

tion problem of plants does not determine the skill mix at a specific plant.

Consequently plants would choose arbitrarily how many low or high skilled

workers they employ. Now imagine that we have two plants with exactly the

same level of ωit and kit but different choices regarding their skill mix. More

specifically plant 1 decides to employ low skilled labour whereas plant 2 em-

ploys only high skilled labour. Because we assumed that their productivity

is the same we must have that

l1t = l(ω1t, kit) = l2t (29)

i.e. their choice of effective labour input is the same. However, given their

choices regarding the skill mix we have:

l̃1t = l(ω1t) > l̃1t =
l(ω1t)

φ
(30)

i.e. the measured labour input of plant 1 is higher because it only employs

less productive unskilled workers. Thus if we simply relied on measured

labour input without further modification we would incorrectly conclude that

TFVP in plant 1 is lower. Is there anything we can do to correct for this?

My strategy is as follows: As suggested in equation 29, a result of profit

maximisation is that the effective labour input is a function of ωit. We

do not observe ωit but in the previous section I described how we can use

profits Πit as a predictor of ωit. Crucially, the argument made there is not

affected by the measurement error problem because profits are calculated as

turnover minus labour costs and purchases which all are measured without

error. So profits are correlated with the variable of interest and therefore

comply with one of the requirements necessary to function as an instrument.

Equally we need that they are not correlated with the measurement error.

Is this the case? In Equation 28 I derived the relevant expression for the
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current example. Note that �L
it consists exclusively of expressions that refer

to the relative skill mix: φit

Lit
is the share of wage costs spend on high skilled

labour. uit− l̃it is the log of the share of unskilled workers. As argued before,

with wages reflecting relative productivites the plant level skill mix is not

determined by the profit maximization problem. Consequently, the error

term cannot be correlated with neither ωit nor Πit. What if wages do not

reflect relative productivity? In this case the skill mix is determined by the

profit maximisation problem. However – depending on whether the relative

wage is higher or lower than relative productivity – all plants whould do the

same: either source all required labour from the pool of high skilled or all

from the pool of low skilled. Thus �L
it would be constant across plants and

again it is not correlated with ωit or Πit.

To address the measurement error problem I consequently suggest an in-

strumental variables procedure: in a first stage regress observed input quan-

tities on a polynomial in Πit and kit.

l̃it = φL(Πit, kit) + �L
it (31)

This yields and estimate of effective inputs quantities:

l̂it = φ̂L(Πit, kit) (32)

which is used in turn to calculate the variable factor index.

v̂iit =
∑
z �=K

s̄j(x̂zit − kit) (33)

I then proceed as described in Section 2.1 to get an estimate of γ
µ

and φ(·).
Eventually I compute the corrected estimate of ωit which underlies my cal-

culation of the true spread as

ω̂it = φ̂(Πit, kit) −
(̂

γ

µ

)
kit (34)
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An estimate of TFVP affected by measurement error I get as

ˆ̃ωit = ṽiit −
(̂

γ

µ

)
kit − ς̂it (35)

The formulation for effective labour input introduced in 26 is very restric-

tive. Why should low and high skilled labour be perfect substitutes? And

maybe there are more than only two skill types. It turns out however that

these assumptions are not needed to make the strategy just proposed work.

In principle we can have infinitely many skill types. All that is needed is

that the various input types enter as a homogenous composite index into the

main production function. More specifically, suppose that the effective input

of a variable production factor Xit is

Xit = Ξ(Vit) (36)

where Ξ(·) is a differentiable linear homogenous7 function and Vit is a vector

of N varieties of Xit. By linear homogeniety of Ξ(·) we can write

ln Ξ(Vit) =
N∑

z=1

σzitvzit (37)

where

σzit =
∂ ln Ξ(Vit)

∂ ln Vzit

is equal to the share of variety z in payments to composite factor Xit. Now if

instead of Xit we observe another linear homogenous composite of all varieties

X̃it = Ξ̃ (Vit) – such as the total number of workers or the value of material

inputs deflated by an industry price index – our measurement error becomes

xit − x̃it =
∑N

z=1 σzit (vzit − x̃it)

=
∑N

z=1 σzit

(
ln

{
Vzit

ΣV
it

}
− ln

{
Ξ̃

(
Vit

ΣV
it

)}) (38)

7The linear homogeniety assumption comes without loss of generality because we did

not make any assumption regarding how Xit would enter the production function
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where the second equality follows from linear homogeniety of Ξ̃(·) and

ΣV
it =

N∑
z=1

Vzit (39)

Consequently the error depends again only on relative indexes of the vari-

eties which are either not determined by profit maximization or equal across

plants by our assumption that factor prices are equalized across the econ-

omy. Therefore the error term is not correlated with profits and we can use

a nonparametric regression of X̃it on profits and capital to get a consistent

estimator of Xit.

2.5 Using wages to correct for measurement error

A common practice in production function regression to account for missing

information on skills is to include the average wage level. This section exam-

ines in detail when this is a useful strategy and how it relates to my strategy

put forward in the previous section. Assume again that the effective labour

input is a function of N skill types as in equation 36. The average wage is

thus equal to

Wit =

∑N
z=1 WzitVzit

L̃it

(40)

where L̃it =
∑N

z=1 Vzit. Taking logs and applying the mean value theorem

yields

wit =
N∑

z=1

WzitVzit∑N
z=1 WzitVzit

(xzit − l̃it) (41)

Note that if the relative wages for the various skill types correspond to the

relative marginal productivities of all types actually employed8 wit is exactly

equal to the expression for the measurement error in this case. How can we

exploit this to get a measurement error free estimate of TFVP? Note first

8Some varieties might not be used because for any combination of inputs their marginal

productivity is always lower than their wage.
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that it is not sufficient to include the wage on the production function level

as an additional regressor say in equation 18. As pointed out in equation 27

the error term at the level of the production function �it is the product of the

actual measurement error in labour input and the share of the production

factor in revenue. Consequently, if the revenue share does not happen to

be constant as with a Cobb Douglas production function but instead varies

with the amount of the input used, then inclusion of the wage at the level

of equation 18 is not sufficient to control for the measurement error. Conse-

quently – similar to the strategy described before – we have to correct the

labour input we use, before computing the variable factor index viit. Since

wit = �L
it the obvious way to do this is calculating an estimate of lit as

l̂it = l̃it + wit (42)

Note that this implies that we basically throw away the head count measure

of labour as a variable because the resulting expression is equal to the log of

total labour costs

l̃it + wit =
N∑

z=1

WzitVzit∑N
z=1 WzitVzit

xzit = TLCit

where TLCit represents total labour costs. Does this mean that both strate-

gies – using ei ther a first stage regression of profits and capital or using

average wages – are equally suitable to correct for the measurement error

problem? Not necessarily. While the method using average wages seems

somewhat simpler to compute because no additional regression step is needed

it might be less efficient. Suppose there is an additional iid error affecting

total labour costs so that we actually have

lit = TLCit + �TLC
it (43)

One motivation for this could be that labour markets are not perfectly com-

petitive so that wages at the firm level might idiosyncratically deviate from
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the rule that they represent relative marginal productivities. For consistency

of both, the IV and the average wage procedure we equally need that this

type of error is independent from everything else. However, whereas the av-

erage wage procedure would translate this error unfiltered into our estimate

of the variable factor index, the IV procedure would smooth out some of it.

In the results section I will show TFVP estimates using both procedures.

3 The Data

The source of my data is the Annual Respondents Database (ARD), the

UK census of plants9. Not all UK plants are sent the ARD questionaire

which includes the questions relevant for productivity analysis every year.

Smaller plants are sampled on a random basis. Consequently, the set of

usable observations consists of a reduced sample. The problem is eaggerbated

by the fact that for the estimation procedure outlined in section 2 I require

observations which are observed in consecutive years. The period covered

by my sample are the years 1980 through 2000. Table 3 reports sample

sizes along with descriptive statistics for selected years. Because the ONS

increased the plant size threshold for random sampling of plants the sample

size is somewhat lower in later years10

9More extensive descriptions of the ARD can be found in Barnes and Martin [?], Griffith

[3] and Oulton[14]
10What happened is that although the threshold was increased the actual sample size

increased because more plants were sampled. But as a consequence of this the share of

plants in the sample which is not observed consecutively in the sample has increased.

This creates a problem when calculating the capital stock, which is done via a perpetual

inventory method (for details see Martin [10]). For the perpetual inventory method we

ideally need to observe a plant in all years it exists. Because that’s often not the case I

interpolate investment figure – unless the number of missing years is too high. Because

this last exclusion criterion applied to a larger fraction of plants in later years the number

of usable observations dropped in later years.
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Table 1: Descriptive statistics
year obs mean employment mean va

l

1980 11712 346.35 19.14
1985 11109 296.32 23.04
1990 11085 279.03 26.53
1995 10734 228.65 33.44
1999 8958 188.15 33.85
2000 8632 182.60 33.88

4 Results

Table 4 reports spread calculations – defined as the log difference between

the plant at the 90iest and the 10th percentile – for various productivity

measures along with estimates of the coefficient on capital in equation 11, γ
µ
.

All figures are averages from the 3 digit level at which all estimates are com-

puted to 2 digit levels for simplicity. The last row reports averages for the

economy as a whole. Consider column 2 first. We find that for the economy

as whole the 90-10 difference is 1.077 log points which corresponds to a ratio

of almost 3 to 1. In the food and beverages sector (15) the spread amounts to

a ratio of 4 to 1. These are the spectacular differences discussed in the intro-

duction11. What happens if we calculate TFVP instead? Column 6 contains

the relevant calculations and column 8 the ratio between value added spread

and TFVP spread. In almost all sectors the spread reduces considerably.

Averaging accross the whole economy we find a 1.9 ratio between 90iest and

10th percentile plant which is about 60 percent of the value added spread

(column 8). Only in one 2 digit sector – printing and publishing – TFVP

shows a wider spread than value added.

Table 4 shows non aggregated results for the most extreme – in terms of

TFVP spread – 3 digit sectors. The sectors with the highest TFVP spread –

11Note that the 5 to 1 ratio quoted in the introduction referred to gross output over

employment whereas the figures here show value added over employment. Moreover,

observations with negative value added were dropped.

17



Table 2: Averages across 2digit sectors

(1) (2) (3) (4) (5) (6) (7) (8)

Sector
γ
µ va − l TFP ω + � ω %Meas.Err %Tr.Spr.

15 0.865 1.404 0.381 0.676 0.625 0.041 0.415
17 0.870 0.912 0.337 0.599 0.502 0.110 0.538
18 0.834 1.007 0.441 0.793 0.677 0.115 0.672
19 0.868 0.890 0.327 0.519 0.418 0.114 0.490
20 0.860 0.985 0.408 0.547 0.468 0.079 0.481
21 0.845 1.027 0.297 0.606 0.573 0.035 0.554
22 0.882 1.329 0.635 1.391 1.340 0.045 1.021
24 0.780 1.377 0.430 0.994 0.971 0.017 0.694
25 0.764 0.982 0.368 0.908 0.843 0.069 0.877
26 0.839 1.114 0.453 0.778 0.661 0.109 0.593
27 0.887 0.999 0.319 0.552 0.467 0.089 0.476
28 0.900 0.945 0.441 0.644 0.502 0.150 0.541
29 0.849 0.937 0.373 0.734 0.620 0.124 0.665
30 0.975 1.264 0.496 0.544 0.409 0.107 0.324
31 0.871 0.991 0.407 0.686 0.581 0.105 0.594
32 0.884 1.227 0.487 0.671 0.591 0.066 0.490
33 0.872 1.100 0.458 0.734 0.639 0.088 0.577
34 0.866 0.949 0.333 0.702 0.629 0.081 0.646
35 0.855 0.979 0.461 0.873 0.753 0.123 0.780
36 0.803 1.119 0.450 0.809 0.715 0.083 0.658

Total 0.858 1.077 0.407 0.725 0.636 0.090 0.589
All results were calculated at the 3 digit level and then averaged up to 2 digit sectors.
Column 2 reports the estimated coefficient on the capital stock which is equal to γ

µ .
Columns 4 to 6 report the log difference between the 90iest and 10th percentile for various
productivity measures. Column 7 is (5-6)/3. Column 8 is 6/3.
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Table 3: The 5 sectors where measurement error is highest and lowest

(1) (2) (3) (4) (5) (6) (7) (8)

Sectors with highest measurement error share

Sector obs. γ
µ

(va − l) ω + � ω %Meas.Error %True spread

296 264 0.964 0.859 0.521 0.285 0.275 0.331

262 1324 0.926 1.013 0.702 0.441 0.258 0.435

285 973 0.892 0.953 0.686 0.484 0.212 0.508

287 2994 1.010 1.001 0.537 0.329 0.208 0.328

173 1005 0.884 0.862 0.591 0.418 0.200 0.486

Sectors with lowest measurement error share

Sector obs. γ
µ

(va − l) ω + � ω %Meas.Error %True spread

159 2399 0.625 1.815 1.777 1.794 -0.009 0.988

223 85 1.244 1.706 1.620 1.627 -0.004 0.954

156 452 0.916 1.757 0.362 0.368 -0.004 0.210

264 508 0.619 1.083 1.224 1.226 -0.002 1.132

211 1131 0.820 1.119 0.673 0.669 0.004 0.597

reaching ratios of more than 6 to 1 – include pharmaceuticals (244), bever-

ages (159), and reproduction of records (223). Sectors with particularly low

spread include preparation and spinning of textiles fibres (176), tanning of

leather (191) and manufacture of batteries (314).

How important is the correction for measurement error? Column 5 of ta-

ble reports spread calculations for TVFP including the measurement error�it

12. The resulting spread calculations are in the same range as that for ω

alone. The calculations not corrected for measurement error lead to higher

spread in most sectors however. Column 7 relates the difference measure-

ment error correction makes to the spread in labour productivity13. For the

economy as a whole this produces a ratio of about 10 percent. Table 4,

which reports 3 digit sector results, shows that there is considerable hetero-

12see equation 27
13loosely referred to as the share of measurement error in labour productivity spread.

Note that it is not based on formal decomposition of labour productivity spread
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Table 4: The 5 sectors where the true spread is highest and lowest

(1) (2) (3) (4) (5) (6) (7) (8)

Sectors with highest true spread

Sector obs. γ
µ

(y − l) (ω + �) ω %Meas.Error %True spread

244 1231 0.622 1.534 1.879 1.851 0.018 1.207

159 2399 0.625 1.815 1.777 1.794 -0.009 0.988

223 85 1.244 1.706 1.620 1.627 -0.004 0.954

222 3862 0.678 1.090 1.349 1.282 0.061 1.177

264 508 0.619 1.083 1.224 1.226 -0.002 1.132

Sectors with lowest true spread

Sector obs. γ
µ

(y − l) (ω + �) ω %Meas.Error %True spread

176 114 1.030 0.740 0.290 0.199 0.123 0.270

191 224 0.921 0.859 0.293 0.219 0.087 0.255

314 193 0.960 0.895 0.387 0.264 0.137 0.295

152 438 0.929 1.229 0.357 0.273 0.068 0.222

296 264 0.964 0.859 0.521 0.285 0.275 0.331

geneity in this number. For sectors such as manufacture of weapons (296),

manufacture of non-refractory ceramic goods and metal treatment (285) the

measurement error share reaches values of more than 20 percent. In sec-

tors such as manufacture of beverages (159), reproduction of recorded media

(223), manufacture of grain mill products (156) or manufacture of bricks and

tiles the measurement error has a tendency to reduce measured spread.

Thus controlling for substitution between labour and other production

factors is important to examine the productivity spread and measurement

error has a tendency to increase measured productivity spread although it

does not a dramatic impact.

4.1 Alternative TFP measures

How specific are these results to the particular choice of productivity mea-

sure? In this section I compare the TFVP measure introduced in section 2
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firstly to a relative TFP measure calculated using factor shares, referred to

as TFP and calculated as

tfpit = rit − s̄Llit − s̄Mmit − (1 − s̄L − s̄M)kit (44)

where as before lower case letters denote log deviations from the median

plant in terms of gross output in each 3 digit industry year cell and the factor

shares used are the average between the factor share at plant i and at the

median plant. The second measure I compute is TFVP with the correction

for measurement error relying on the average wage as outlined in section 2.5,

ωwage. Thirdly, I calculate ωLP , which is TFVP as in section 2 except that

I predict ωit using material inputs instead of profits. This corresponds to

the idea of Levinsohn and Petrin adapted to the current context of imperfect

competition.

Table 5: Correlation between various TFP measures

(1) (2) (3) (4) (5) (6)

va − l TFP ω + � ω ωwage ωLP

va − l 1.000 0.652 0.676 0.531 0.532 0.304

TFP 0.652 1.000 0.340 0.327 0.413 0.011

ω + � 0.676 0.340 1.000 0.872 0.818 0.700

ω 0.531 0.327 0.872 1.000 0.938 0.816

ωwage 0.532 0.413 0.818 0.938 1.000 0.690

ωLP 0.304 0.011 0.700 0.816 0.690 1.000
va− l is log value added per employee relative to the 3 digit median plant in a given year.
TFP is relative to the median plant and calculated using a factor share method. ω + � is
TFVP without correcting for measurement error in labour input. ωwage is TFVP where
measurement error is controlled for using the average wage. ωLP uses material inputs to
control for ωit which corresponds to the method of Levinsohn and Petrin[9] adopted to
the current context.

Table 4.1 shows the correlations between these various measures also re-

porting the respective correlations for labour productivity (va−l) and TFVP

including the measurement error induced by labour input mismeasurement
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(ω + �). The main message from this table is that differences in method-

ology matter. In particular the correlation between TFP and the TFVP

class of productivity measures are very low. The correlation between ω and

TFP is merely 0.33. That’s less than the correlation between ω and labour

productivity: 0.53. The correlation between the three TFVP measure are

rather high: ω and ωwage have a correlation of 0.94, ω and ωLP are with 0.82

somewhat less correlated.

How do the spread calculations with these alternative measures look like?

Column 4 of table 4 reports numbers for TFP which turn out to be consider-

ably lower than the same figures TFVP reported in the previous section. The

average log difference between the 90iest and the 10th percentile plant is now

0.4 log points which corresponds to a ratio of 1.5. Is there an explanation for

this? Note that the capital coefficient value reported in column 1 generally

takes on values which are below 1. Given the interpretation of the coefficient

as the ratio between the scale parameter γ and the markup parameter µ,

this is consistent with a certain amount of imperfect competition and either

constant or increasing returns to scale. An implicit assumption in the calcu-

lation of TFP is that this capital coefficient is equal to 1 which means that

there is no imperfect competition and there are constant returns to scale.

This means that if capital stock and ω are positively correlated, some of

the difference in ω is attributed to the capital stock and consequently ω is

underestimated.

Spread calculations for ωwage and ωLP along with capital coefficient esti-

mates for these two cases are reported in table 4.1. The spread calculations

are very similar. It appears however that spread measures based on ω are

generally larger then the spread measures based on ωwage or ωLP . This pat-

tern is however not uniform across 2 digit sectors nor is the ranking of sectors

consistent across the 3 measures. The capital coefficient µ
γ

is generally smaller

for ω for the other two measures, but again there is no uniformity nor ranking
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consistence accross sectors. An explanation for why the spreads calculated

using ω are generally higher than the ones based on ωwage could be as fol-

lows: If there is an additional error such as the one introduced in equation

43 then in the ωwage calculation all of it would be attributed to the measure-

ment error in labour �L. Compared to the ω case that’s an overestimation of

�L which in turn leads to an underestimation of TFVP. In the ωLP case on

the other hand we use material inputs, mit, instead of profits Πit to predict

ωit. If mit is less good a predictor than Πit then this might well lead to and

underestimation of ωit.

5 Good or bad spread?

Section 4 showed that the productivity spread is considerably lower for TFVP

than for plain labour productivity suggesting that the economically relevant

magnitude of the spread is not as bad as thought initially. But even in terms

of TFVP for the economy as a whole the best plants are on average more

than 80 percent more productive than the worst14. Is this something to worry

about because it means that poorly performing plants are not forced to exit

or improve or is it simply a consequence of a healthy process of selection. A

relevant statistic to answer this question is the persistence of this productivity

dispersion over time.

Table 5 shows a 3 year transition matrix for the distribution of value

added over employment; i.e. the cells of table 5 contain estimates of the

probability that a plant that is in the bottom quintile in year t, say, moves to

the second quintile in t + 3 (row 1 column 2). In for labour productivity this

probability is 15 percent and calculated from the number of such transitions

we observe in the course of my 1980-2000 sample. The last column of table 5

contains estimates of the probability that a plant exits between t and t + 3.

14Table 4, Column 6
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Table 6: Averages across 2digit sectors

(Alternative ways to control for endogeneity and measurement error)

(1) (2) (3) (4) (5)

Sector
γ
µwage

ωwage
γ
µLP

ωLP

15 0.867 0.583 0.873 0.492

17 0.887 0.445 0.874 0.439

18 0.881 0.450 0.839 0.606

19 0.887 0.346 0.884 0.328

20 0.874 0.407 0.839 0.439

21 0.891 0.412 0.870 0.420

22 0.809 0.809 0.968 1.670

24 0.787 0.882 0.806 0.784

25 0.762 0.787 0.812 0.590

26 0.867 0.548 0.818 0.632

27 0.906 0.353 0.907 0.334

28 0.883 0.498 0.921 0.316

29 0.864 0.527 0.846 0.532

30 0.960 0.373 0.912 0.348

31 0.877 0.454 0.871 0.497

32 0.858 0.569 0.869 0.567

33 0.875 0.545 0.871 0.502

34 0.854 0.658 0.855 0.621

35 0.845 0.712 0.881 0.523

36 0.830 0.567 0.830 0.544

Total 0.863 0.544 0.867 0.539
All results were calculated at the 3 digit level and then averaged up to 2 digit sectors.
Column 2 and 3 report the results for the capital coefficient and the estimate of the spread
when total labour costs are used as labour input measure. Columns 4 and 5 report the
same statistics when intermediate inputs are used to predict ωit. This corresponds to
the methodology of Levinsohn and Petrin [9] adapted for the current context of imperfect
competition and increasing returns to scale as well as controlling for measurement error
in labour input.
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Table 7: Transition matrix for V A
L

20 40 60 80 100 exit

20 0.34 0.17 0.08 0.04 0.02 0.34

40 0.17 0.24 0.17 0.10 0.04 0.28

60 0.08 0.18 0.22 0.18 0.07 0.27

80 0.04 0.10 0.19 0.26 0.16 0.25

100 0.02 0.04 0.08 0.18 0.40 0.28

entry 0.22 0.19 0.18 0.19 0.21 0.00
The cells report estimates of transition probabilities; e.g. the cell in column 2 of row 1
reports what fraction of plants that were in the bottom quintile in a given year managed to
move to the second quintile three years later. The exit column report what fraction exited
over the three year intervall. The entry row reports how entering plants are distributed
accross productivity quintiles. The switching of the 3 digit industry by a plant was treated
as an exit with consecutive entry.

Table 8: Transition matrix for TFP
20 40 60 80 100 exit

20 0.33 0.18 0.11 0.06 0.03 0.30

40 0.18 0.22 0.18 0.11 0.04 0.27

60 0.10 0.18 0.21 0.18 0.08 0.25

80 0.06 0.12 0.18 0.23 0.14 0.27

100 0.03 0.06 0.10 0.18 0.30 0.33

entry 0.22 0.18 0.17 0.19 0.24 0.00
see notes of table 5

Table 9: Transition matrix for TFVP
20 40 60 80 100 exit

20 0.29 0.17 0.07 0.03 0.01 0.44

40 0.14 0.27 0.19 0.07 0.02 0.32

60 0.05 0.17 0.28 0.19 0.04 0.27

80 0.02 0.06 0.18 0.35 0.16 0.23

100 0.01 0.02 0.04 0.16 0.56 0.21

entry 0.29 0.20 0.18 0.17 0.16 0.00
see notes of table 5
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What can table 5 tell us about the quality of the productivity spread? The

striking about plant level productivity distribution is that it is persistent15.

The diagonal elements of the matrix in table 5 are much higher than the off

diagonal elements suggesting that plants are most likely to remain at their

current position in the rather than move up or down. This result is core

in suggestion that there might be a problem with the productivity spread.

If there are plants in the market with much higher productivity, why are

lagging plants not more likely to move up – or exit for that matter? Looking

at the last column it is somewhat reassuring that the bottom 34 percent the

bottom quintile plants have a higher exit probability than other plants. But

then again even for the top plants the exit probability is with 28 percent

fairly similar to the bottom one.

Before making any fast conclusions on all of this the key question to

answer is if labour productivity captures plant performance and in turn dy-

namic behaviour adequately. Table 5 shows the transition matrix for TFP16.

It turns out that persistence does not change much and exit probability of

top plants is now actually higher than for bottom plants, which is rather

implausible17. So what happens if we use TFVP instead? Table ?? , which

has the relevant numbers, paints a much more positive picture of the pro-

ductivity spread. Persistence of the bottom plants is 5 percentage points

15This is a result stressed by other authors before. Compare Baily et al.[1], Bartelsman

and Dhrymes[2] or Haskel[6]
16as defined in equation 44
17In Haskel and Martin [5] TFP transitions matrices did not have this feature although

exit probabilities for top and bottom were very close. Here I compute TFP slightly different

however and plants with negative profits are dropped. In that paper we calculated the

median in equation 44 for every production factor separately. This is not an entirely correct

application of the mean value theorem on which the notion of relative TFP is based. What

I do in this paper instead is identifying the median plant in terms of gross output and

then use the input factor levels of this one plant to derive the relative expressions of the

other variables.
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lower and persistence of top plants 16 points higher compared to the labour

productivity case. Exit probability of bottom plants is twice as high as that

of top plants.

6 Conclusion

I put forward a novel way of computing TFP in this paper which combines a

refined version of the methodology of Olley and Pakes[12] with the revenue

production framework introduced by Klette and Griliches[7]. The framework

allows for a very flexible production technology, non constant returns to

scale, addresses the endogeneity of inputs problem in production function

estimation and controls for measurement error in labour inputs.

Measurement error in labour inputs is found to increase measured pro-

ductivity spreads although not dramatically. The TFP measure obtained

with my method leads to productivity spread estimates which are on aver-

age about 60 percent the size of the labour productivity spread. Compared

to labour productivity and even more so compared to TFP calculated in a

standard way, the dynamic features of the resulting productivity measure are

more plausible and more in line with the notion that productivity spreads

are the static trace of a dynamic learning and selection process.
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A The monotone relationship between prof-

its and shocks

Start by noting that given our assumption of a homogenous production func-

tion 2 we can write the cost minimization problem as

C̃(K̃it,wV it) = min
X̃V it

∑
z �=K

wzitX̃zit s.t. 1 = f
(
K̃it, X̃V it

)
(45)

where K̃it = Kit

Ỹit
with Ỹit =

(
Yit

Ait

) 1
γ
. X̃V it collects the same transformation

for all variable production factors in a vector. Total cost become in terms of

Equation 45

Cit = C̃itỸit (46)

Next consider the profit function.

Πit(Kit, λit, ait,wit) = Rit − Cit

Given the demand function 5 and the cost function 46 we can write it as

Πit(Kit, λit, ait,wit) =

(
ΛitRt

Pt

) 1
η

PtQ
1− 1

η − C̃itỸit (47)

Note that the firm’s profit maximization first order condition is(
1 − 1

η

)
Rit

Qit

=
1

γ
z(Ỹit, K̃it)

Ỹit

Qit

(48)
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where

z(Ỹit, K̃it) =
∂C̃it

∂Ỹit

Ỹit + C̃it (49)

Finally, note that the derivatives of profit with respect to changes in λit and

ait are
∂Πit

∂λit

= µ−1Rit

and
∂Πit

∂ait

= z(Ỹit, K̃it)
1

γ

(
Qit

Ait

) 1
γ

= µ−1Rit (50)

where the last equality follows from the first order condition 4818 and

µ =

(
1 − 1

η

)−1

As a consequence of all these results we get for the total differential of profits

dΠit = Rit
1

µ
(dλit + dait) = Ritdωit (51)

which establishes that there is a positive relationship between profits and

composite shock index ωit.

B Definitions

Table 10: 3 digit industry classification

Sector Description
151 Production, processing and preserving of meat and meat products
152 Processing and preserving of fish and fish products
153 Processing and preserving of fruit and vegetables
154 Manufacture of vegetable and animal oils and fats
155 Manufacture of dairy products
156 Manufacture of grain mill products, starches and starch products
157 Manufacture of prepared animal feeds
158 Manufacture of other food products
159 Manufacture of beverages
160 Manufacture of tobacco products
171 Preparation and spinning of textile fibres

18This is an application of the envelope theorem
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Table 10: (continued)

Sector Description
172 Textile weaving
173 Finishing of textiles
174 Manufacture of made-up textile articles, except apparel
175 Manufacture of other textiles
176 Manufacture of knitted and crocheted fabrics
177 Manufacture of knitted and crocheted articles
181 Manufacture of leather clothes
182 Manufacture of other wearing apparel and accessories
183 Dressing and dyeing of fur; manufacture of articles of fur
191 Tanning and dressing of leather
192 Manufacture of luggage, handbags and the like, saddlery and harness
193 Manufacture of footwear
201 Saw milling and planing of wood, impregnation of wood
202 Manufacture of veneer sheets; manufacture of plywood, laminboard, particle board
203 Manufacture of builders’ carpentry and joinery
204 Manufacture of wooden containers
205 Manufacture of other products of wood; manufacture of articles of cork, straw an
211 Manufacture of pulp, paper and paperboard
212 Manufacture of articles of paper and paperboard
221 Publishing
222 Printing and service activities related to printing
223 Reproduction of recorded media
231 Manufacture of coke oven products
232 Manufacture of refined petroleum products
233 Processing of nuclear fuel
241 Manufacture of basic chemicals
242 Manufacture of pesticides and other agro-chemical products
243 Manufacture of paints, varnishes and similar coatings, printing ink and mastics
244 Manufacture of pharmaceuticals, medicinal chemicals and botanical products
245 Manufacture of soap and detergents, cleaning and polishing preparations, perfume
246 Manufacture of other chemical products
247 Manufacture of man-made fibres
251 Manufacture of rubber products
252 Manufacture of plastic products
261 Manufacture of glass and glass products
262 Manufacture of non-refractory ceramic goods other than for construction purposes
263 Manufacture of ceramic tiles and flags
264 Manufacture of bricks, tiles and construction products, in baked clay
265 Manufacture of cement, lime and plaster
266 Manufacture of articles of concrete, plaster and cement
267 Cutting, shaping and finishing of stone
268 Manufacture of other non-metallic mineral products
271 Manufacture of basic iron and steel and of ferro-alloys (ECSC)
272 Manufacture of tubes
273 Other first processing of iron and steel and production of non-ECSC ferro-alloys
274 Manufacture of basic precious and other non-ferrous metals
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Table 10: (continued)

Sector Description
275 Casting of metals
281 Manufacture of structural metal products
282 Manufacture of tanks, reservoirs and containers of metal; manufacture of central
283 Manufacture of steam generators, except central heating hot water boilers
284 Forging, pressing, stamping and roll forming of metal; powder metallurgy
285 Treatment and coating of metals; general mechanical engineering
286 Manufacture of cutlery, tools and general hardware
287 Manufacture of other fabricated metal products
291 Manufacture of machinery for the production and use of mechanical power, except
292 Manufacture of other general purpose machinery
293 Manufacture of agricultural and forestry machinery
294 Manufacture of machine tools
295 Manufacture of other special purpose machinery
296 Manufacture of weapons and ammunition
297 Manufacture of domestic appliances not elsewhere classified
300 Manufacture of office machinery and computers
311 Manufacture of electric motors, generators and transformers
312 Manufacture of electricity distribution and control apparatus
313 Manufacture of insulated wire and cable
314 Manufacture of accumulators, primary cells and primary batteries
315 Manufacture of lighting equipment and electric lamps
316 Manufacture of electrical equipment not elsewhere classified
321 Manufacture of electronic valves and tubes and other electronic components
322 Manufacture of television and radio transmitters and apparatus for line telephon
323 Manufacture of television and radio receivers, sound or video recording or repro
331 Manufacture of medical and surgical equipment and orthopaedic appliances
332 Manufacture of instruments and appliances for measuring, checking, testing, navi
333 Manufacture of industrial process control equipment
334 Manufacture of optical instruments and photographic equipment
335 Manufacture of watches and clocks
341 Manufacture of motor vehicles
342 Manufacture of bodies (coachwork) for motor vehicles; manufacture of trailers an
343 Manufacture of parts and accessories for motor vehicles and their engines
351 Building and repairing of ships and boats
352 Manufacture of railway and tramway locomotives and rolling stock
353 Manufacture of aircraft and spacecraft
354 Manufacture of motorcycles and bicycles
355 Manufacture of other transport equipment not elsewhere classified
361 Manufacture of furniture
362 Manufacture of jewellery and related articles
363 Manufacture of musical instruments
364 Manufacture of sports goods
365 Manufacture of games and toys
366 Miscellaneous manufacturing not elsewhere classified
371 Recycling of metal waste and scrap
372 Recycling of non-metal waste and scrap
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Table 10: (continued)

Sector Description
401 Production and distribution of electricity
402 Manufacture of gas; distribution of gaseous fuels through mains
403 Steam and hot water supply
451 Site preparation
452 Building of complete constructions or parts thereof; civil engineering
453 Building installation
454 Building completion
455 Renting of construction or demolition equipment with operator
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